Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.051
Filtrar
1.
Langmuir ; 39(36): 12541-12549, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647566

RESUMO

Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.


Assuntos
Gangliosídeos , Melanoma , Humanos , Animais , Camundongos , Gangliosídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Glicolipídeos , Transporte Biológico
2.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022195

RESUMO

BACKGROUND: We explored whether the disialoganglioside GD2 (GD2) is expressed in small cell lung cancer (SCLC) and non-SCLC (NSCLC) and can be targeted by GD2-specific chimeric antigen receptor (CAR) T cells. METHODS: GD2 expression was evaluated in tumor cell lines and tumor biopsies by flow cytometry and immunohistochemistry. We used a GD2.CAR that coexpress the IL-15 to promote T-cell proliferation and persistence, and the inducible caspase 9 gene safety switch to ablate GD2.CAR-T cells in case of unforeseen toxicity. The antitumor activity of GD2.CAR-T cells was evaluated using in vitro cocultures and in xenograft models of orthotopic and metastatic tumors. The modulation of the GD2 expression in tumor cell lines in response to an epigenetic drug was also evaluated. RESULTS: GD2 was expressed on the cell surface of four of fifteen SCLC and NSCLC cell lines (26.7%) tested by flow cytometry, and in 39% of SCLC, 72% of lung adenocarcinoma and 56% of squamous cell carcinoma analyzed by immunohistochemistry. GD2 expression by flow cytometry was also found on the cell surface of tumor cells freshly isolated from tumor biopsies. GD2.CAR-T cells exhibited antigen-dependent cytotoxicity in vitro and in vivo in xenograft models of GD2-expressing lung tumors. Finally, to explore the applicability of this approach to antigen low expressing tumors, we showed that pretreatment of GD2low/neg lung cancer cell lines with the Enhancer of zeste homolog 2 inhibitor tazemetostat upregulated GD2 expression at sufficient levels to trigger GD2.CAR-T cell cytotoxic activity. CONCLUSIONS: GD2 is a promising target for CAR-T cell therapy in lung cancer. Tazemetostat treatment could be used to upregulate GD2 expression in tumor cells, enhancing their susceptibility to CAR-T cell targeting.


Assuntos
Gangliosídeos/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Gangliosídeos/farmacologia , Humanos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Neuroreport ; 32(13): 1113-1121, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34284446

RESUMO

Traumatic brain injury (TBI) remains a major cause of disability and death in modern society. In this study, we explored the neuroprotection role of the combination of gangliosides (GM) and mild hypothermia (MH) and the potential effect on oxidative stress injuries in a rat model of TBI. All 50 rats were randomized to five groups: (1) NC group: undergoing surgery without hit; (2) TBI group: undergoing surgery with hit; (3) GM group: TBI treated with gangliosides; (4) MHT group: TBI treated with MH; (5) GM+MHT group: TBI treated with gangliosides and MH. Spatial learning impairments, neurological function injury, Evans Blue leakage, brain MRI and oxidative stress injuries were assessed. The protein levels of Cleaved-caspase 3 and CytC were also detected. Both GM and MHT could rescue TBI-induced spatial learning impairments, improve neurological function injury and brain edema. In addition, the combination of them has a better therapeutic effect. Through the MRI, we found that compared with the TBI group, the brain tissue edema area of GM group, MHT group, and GM+MHT group was smaller, the occupancy effect was weakened, and the midline was slightly shifted. Compared with the GM group and MHT group, these changes in the GM+MHT group were much smaller. GM combined with MH-alleviated TBI-induced oxidative stress injuries and apoptosis. Our study reveals that GM and MH potentially provide neuroprotection via the suppression of oxidative stress injuries and apoptosis after TBI in rats.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Gangliosídeos/farmacologia , Hipotermia Induzida/métodos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Gangliosídeos/uso terapêutico , Masculino , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
Mol Ther ; 29(10): 3059-3071, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111562

RESUMO

Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.


Assuntos
Gangliosídeo G(M1)/administração & dosagem , Gangliosídeos/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Administração Intranasal , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Epigênese Genética/efeitos dos fármacos , Gangliosídeo G(M1)/farmacologia , Gangliosídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/enzimologia , Tirosina 3-Mono-Oxigenase/genética
5.
Biosci Biotechnol Biochem ; 85(3): 675-686, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33589896

RESUMO

Gangliosides (GLSs) are ubiquitously distributed in all tissues but highly enriched in nervous system. Currently, it is unclear how exogenous GLSs regulate neuritogenesis, although neural functions of endogenous GLSs are widely studied. Herein, we evaluated the neuritogenic activities and mechanism of sea urchin gangliosides (SU-GLSs) in vitro. These different glycosylated SU-GLSs, including GM4(1S), GD4(1S), GD4(2A), and GD4(2G), promoted differentiation of NGF-induced PC12 cells in a dose-dependent and structure-selective manner. Sulfate-type and disialo-type GLSs exhibited stronger neuritogenic effects than monosialoganglioside GM1. Furthermore, SU-GLSs might act as neurotrophic factors possessing neuritogenic effects, via targeting tyrosine-kinase receptors (TrkA and TrkB) and activating MEK1/2-ERK1/2-CREB and PI3K-Akt-CREB pathways. This activation resulted in increased expression and secretion of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). These pathways were verified by specific inhibitors. Our results confirmed the neuritogenic functions of SU-GLS in vitro and indicated their potential roles as natural nutrition for neuritogenesis.


Assuntos
Gangliosídeos/farmacologia , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Ouriços-do-Mar/química , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Proteínas Quinases/metabolismo , Ratos
6.
BMB Rep ; 54(2): 136-141, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33407998

RESUMO

Thyroid eye disease (TED) is a complex autoimmune disease with a spectrum of signs. we previously reported that trisialoganglioside (GT)1b is significantly overexpressed in the orbital tissue of TED patients, and that exogenous GT1b strongly induced HA synthesis in orbital fibroblasts. However, the signaling pathway in GT1b-induced hyaluronic acid synthase (HAS) expression in orbital fibroblasts from TED patients have rarely been investigated. Here, we demonstrated that GT1b induced phosphorylation of Akt/mTOR in a dose-dependent manner in orbital fibroblasts from TED patients. Both co-treatment with a specific inhibitor for PI3K and siRNA knockdown of TLR2 attenuated GT1b-induced Akt phosphorylation. GT1b significantly induced HAS2 expression at both the transcriptional and translational level, which was suppressed by specific inhibitors of PI3K or Akt/mTOR, and by siRNA knockdown of TLR2. In conclusion, GT1b induced HAS2 in orbital fibroblasts from TED patients via activation of the PI3Krelated signaling pathway, dependent on TLR2. [BMB Reports 2021; 54(2): 136-141].


Assuntos
Fibroblastos/efeitos dos fármacos , Gangliosídeos/farmacologia , Oftalmopatia de Graves/tratamento farmacológico , Hialuronan Sintases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 2 Toll-Like/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/patologia , Humanos , Hialuronan Sintases/genética , Ácido Hialurônico/biossíntese
8.
Glycoconj J ; 37(6): 713-727, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33201378

RESUMO

Recently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/genética , Neuroblastoma/genética , Fosfolipase C gama/genética , Receptor trkA/genética , Animais , Cálcio/metabolismo , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Diferenciação Celular/genética , Gangliosídeos/química , Gangliosídeos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Neuritos/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Oligossacarídeos/farmacologia
9.
Mar Drugs ; 18(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003399

RESUMO

Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial cells were stimulated with LPS in the presence or absence of different Hp-s1 concentrations. The anti-inflammatory effect and underlying mechanism of Hp-s1 in LPS-activated microglia cells were assessed through a Cell Counting kit-8 assay, Western blot analysis, and immunofluorescence. We found that Hp-s1 suppressed not only the expression of inducible nitric oxide synthase and cyclooxygenase-2 but also the expression of proinflammatory cytokines, such as TNF-α, IL-1ß, and IL-6. Hp-s1 inhibited the LPS-induced NF-κB signaling pathway by attenuating the phosphorylation and translocation of NF-κB p65 and by disrupting the degradation and phosphorylation of inhibitor κB-α (IκBα). Moreover, Hp-s1 inhibited the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Hp-s1 also reduced the expression of myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factors 6 (TRAF6), which are prerequisites for NF-κB and MAPKs activation. These findings indicated that Hp-s1 alleviated LPS-induced proinflammatory responses in microglial cells by downregulating MyD88-mediated NF-κB and JNK/p38 MAPK signaling pathways, suggesting further evaluation as a new anti-neuroinflammatory drug.


Assuntos
Anti-Inflamatórios/farmacologia , Gangliosídeos/farmacologia , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Citocinas/metabolismo , Gangliosídeos/isolamento & purificação , Hemicentrotus/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Org Lett ; 22(19): 7491-7495, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32965122

RESUMO

A total synthesis of echinodermatous ganglioside LLG-3 with neuritogenic activity was accomplished by a convergent strategy. The synthesis of 2-hydroxyethyl 8-O-Me-α-sialoside 2 was started from the phenyl 7,8-di-O-Pico-thiosialoside 5, which can be chemoselectively removed the picoloyl group, and then the methyl group in 8-O-MeNeu5Ac moiety was chemoselectively prepared using TMSCHN2/FeCl3. For preparation of the terminal disialic unit, oxidative amidation was initially utilized by our group to efficiently construct the α(2,11) linkage of 8-O-Me-Neu5Acα(2,11)Neu5Gc. Herein, we also demonstrate that the synthesized ganglioside LLG-3 exhibited the neuritogenic activity toward the primary cortical neurons and that biological activity is superior to that of ganglioside DSG-A.


Assuntos
Gangliosídeos/síntese química , Gangliosídeos/farmacologia , Neurônios/química , Animais , Glicosilação , Estrutura Molecular , Crescimento Neuronal/fisiologia , Células PC12 , Ratos
11.
Sci Rep ; 10(1): 10191, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576898

RESUMO

Having demonstrated the ability of monosialoganglioside GM1 micelles as oncology drug transporter, this work focuses on evaluating its application in an in vivo system, studying the toxicity and antitumoral effect of GM1-Ptx micellar formulation. The maximum tolerated dose (MTD) obtained after intravenous administration of GM1-Ptx in mice was 55 mg/kg and the 50% lethal dose (LD50) was 70 mg/kg. This value is higher than those described for the commercial formulations TAXOL and ABRAXANE, with LD50 of 30 and 45 mg/kg respectively. The antitumor activity, mortality and incidence of metastasis were studied on a murine model of mammary gland cancer. The GM1-Ptx formulation was administered i.v. at different doses for 9 weeks using empty GM1 micelles and saline as treatment controls. Once the treatments were completed, biochemical markers were quantified and histological tissue tests were performed. The most promising results were obtained with the treatment at a dose of 15 mg/kg/twice a week, condition in which a longer survival and significant reduction in the incidence of animals with metastasis, since only one 25% of the mice showed presence of pulmonary micro metastases.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Gangliosídeos/farmacologia , Paclitaxel/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Polietilenoglicóis/química
12.
BMC Microbiol ; 20(1): 69, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228455

RESUMO

BACKGROUND: Vibrio vulnificus hemolysin (VVH) is a pore-forming toxin secreted by Vibrio vulnificus. Cellular cholesterol was believed to be the receptor for VVH, because cholesterol could bind to VVH and preincubation with cholesterol inhibited cytotoxicity. It has been reported that specific glycans such as N-acetyl-D-galactosamine and N-acetyl-D-lactosamine bind to VVH, however, it has not been known whether these glycans could inhibit the cytotoxicity of VVH without oligomer formation. Thus, to date, binding mechanisms of VVH to cellular membrane, including specific receptors have not been elucidated. RESULTS: We show here that VVH associates with ganglioside GM1a, Fucosyl-GM1, GD1a, GT1c, and GD1b by glycan array. Among them, GM1a could pulldown VVH. Moreover, the GD1a inhibited the cytotoxicity of VVH without the formation of oligomers. CONCLUSION: This is the first report of a molecule able to inhibit the binding of VVH to target cells without oligomerization of VVH.


Assuntos
Membrana Celular/metabolismo , Gangliosídeos/farmacologia , Proteínas Hemolisinas/metabolismo , Vibrio vulnificus/patogenicidade , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células CHO , Colesterol/metabolismo , Cricetulus , Glicômica/métodos , Proteínas Hemolisinas/química , Análise em Microsséries , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Multimerização Proteica/efeitos dos fármacos , Vibrio vulnificus/metabolismo
13.
Molecules ; 25(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110992

RESUMO

3-iodothyronamine (T1AM) and the recently developed analog SG-2 are rapidly emerging as promising multi-target neuroprotective ligands able to reprogram lipid metabolism and to produce memory enhancement in mice. To elucidate the molecular mechanisms underlying the multi-target effects of these novel drug candidates, here we investigated whether the modulation of SIRT6, known to play a key role in reprogramming energy metabolism, might also drive the activation of clearing pathways, such as autophagy and ubiquitine-proteasome (UP), as further mechanisms against neurodegeneration. We show that both T1AM and SG-2 increase autophagy in U87MG cells by inducing the expression of SIRT6, which suppresses Akt activity thus leading to mTOR inhibition. This effect was concomitant with down-regulation of autophagy-related genes, including Hif1α, p53 and mTOR. Remarkably, when mTOR was inhibited a concomitant activation of autophagy and UP took place in U87MG cells. Since both compounds activate autophagy, which is known to sustain long term potentiation (LTP) in the entorhinal cortex (EC) and counteracting AD pathology, further electrophysiological studies were carried out in a transgenic mouse model of AD. We found that SG-2 was able to rescue LTP with an efficacy comparable to T1AM, further underlying its potential as a novel pleiotropic agent for neurodegenerative disorders treatment.


Assuntos
Gangliosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Sirtuínas/metabolismo , Tironinas/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Córtex Entorrinal/patologia , Gangliosídeos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos Transgênicos , Fármacos Neuroprotetores/química , Serina-Treonina Quinases TOR/metabolismo , Tironinas/química
14.
Med Sci Monit ; 26: e919600, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114591

RESUMO

BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI) has been widely applied in clinical practice in China to treat functional confusion caused by brain diseases. Sevoflurane, a frequently-used inhalational anesthetic, was discovered to have neurotoxicity that can cause neurological damage in patients. The present study was performed to investigate the protective effect of CPCGI on sevoflurane-induced nerve damage and to reveal the neuroprotective mechanisms of CPCGI. MATERIAL AND METHODS Firstly, the hippocampal neurons were separated from Sprague-Dawley embryonic rats, and were stimulated by 3% sevoflurane for different times (0, 2, 4, and 6 h). Then, cell viability and cell apoptosis were assessed by thiazolyl blue tetrazolium bromide (MTT) and flow cytometry (FCM), respectively. Western blot analysis was used to determine the apoptosis-related protein expression levels. RESULTS The results demonstrated that 3% sevoflurane significantly inhibited cell viability but induced cell apoptosis in neurons in a time-dependent manner. Treatment with 3% sevoflurane also promoted the Bax (B cell leukemia/lymphoma 2​ (Bcl2)-associated X protein) and cleaved caspase3 protein expressions, and suppressed Bcl-2 and pro-caspase3 expressions in hippocampal neurons. In addition, phosphorylated (p)-p38 and p-p65 expression and the ratio of p-p38/p38 and p-p65/p65 were upregulated in a time-dependent manner after 3% sevoflurane treatment. Further analysis indicated that all the effects of 3% sevoflurane on hippocampal neurons were reversed by CPCGI pre-treatment. CONCLUSIONS We demonstrated the neuroprotective role of CPCGI in sevoflurane-stimulated neuronal cell damage via regulation of the MAPK/NF-kappaB signaling pathway.


Assuntos
Cerebrosídeos , Gangliosídeos , Hipocampo , NF-kappa B/metabolismo , Neurônios , Sevoflurano/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anestésicos Inalatórios/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cerebrosídeos/metabolismo , Cerebrosídeos/farmacologia , Gangliosídeos/metabolismo , Gangliosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Suínos
15.
Reprod Sci ; 27(1): 278-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046393

RESUMO

Ganglioside GT1b is well-known for its role in cytokine production and in activating epidermal growth factor receptor (EGFR)-mediated signaling pathways in cancer cells. However, there are no reports that clearly elucidate the role of GT1b in EGFR-mediated signaling pathways in porcine oocytes during the process of in vitro maturation (IVM). In this study, we investigated the role of GT1b in EGFR-mediated activation of the ERK1/2 pathway in porcine cumulus-oocyte complexes (COCs) at 44 h of IVM. Our data show that expression of the ST3GAL2 protein significantly increased in porcine COCs at 44 h irrespective of treatment with EGF. Meiotic maturation and mRNA levels of factors (HAS2, TNFAIP6, and PTX3) related to cumulus cell expansion significantly increased in COCs treated with 2 µM GT1b during IVM in the absence of EGF. They also increased in COCs treated with EGF/GT1b as compared to that in the other groups. Interestingly, protein levels of EGFR, phospho-EGFR, ERK1/2, and phospho-ERK1/2 dramatically increased in COCs treated with EGF/GT1b. Moreover, the rate of fertilization and the developmental competence of blastocyst were significantly higher in EGF/GT1b-treated COCs. Taken together, these results suggest that exogenous GT1b improves meiotic maturation and cumulus cell expansion in porcine COCs via activation of EGFR-mediated ERK1/2 signaling.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Receptores ErbB/metabolismo , Gangliosídeos/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células do Cúmulo/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oócitos/metabolismo , Suínos
16.
J Am Heart Assoc ; 9(2): e014810, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31928157

RESUMO

Background The function of medin, one of the most common human amyloid proteins that accumulates in the vasculature with aging, remains unknown. We aim to probe medin's role in cerebrovascular disease by comparing cerebral arterial medin content between cognitively normal and vascular dementia (VaD) patients and studying its effects on endothelial cell (EC) immune activation and neuroinflammation. We also tested whether monosialoganglioside-containing nanoliposomes could reverse medin's adverse effects. Methods and Results Cerebral artery medin and astrocyte activation were measured and compared between VaD and cognitively normal elderly brain donors. ECs were exposed to physiologic dose of medin (5 µmol/L), and viability and immune activation (interleukin-8, interleukin-6, intercellular adhesion molecule-1, and plasminogen activator inhibitor-1) were measured without or with monosialoganglioside-containing nanoliposomes (300 µg/mL). Astrocytes were exposed to vehicle, medin, medin-treated ECs, or their conditioned media, and interleukin-8 production was compared. Cerebral collateral arterial and parenchymal arteriole medin, white matter lesion scores, and astrocyte activation were higher in VaD versus cognitively normal donors. Medin induced EC immune activation (increased interleukin-8, interleukin-6, intercellular adhesion molecule-1, and plasminogen activator inhibitor-1) and reduced EC viability, which were reversed by monosialoganglioside-containing nanoliposomes. Interleukin-8 production was augmented when astrocytes were exposed to medin-treated ECs or their conditioned media. Conclusions Cerebral arterial medin is higher in VaD compared with cognitively normal patients. Medin induces EC immune activation that modulates astrocyte activation, and its effects are reversed by monosialoganglioside-containing nanoliposomes. Medin is a candidate novel risk factor for aging-related cerebrovascular disease and VaD.


Assuntos
Antígenos de Superfície/toxicidade , Astrócitos/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Gangliosídeos/farmacologia , Proteínas do Leite/toxicidade , Nanopartículas , Idoso , Idoso de 80 Anos ou mais , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Artérias Cerebrais/imunologia , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Técnicas de Cocultura , Demência Vascular/imunologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Lipossomos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(8): 721-726, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31638570

RESUMO

Objective To study the effects of compound porcine cerebroside and ganglioside injection (CPCGI) on brain injury and expression of cerebellin 4 (CBLN4) in neonatal mice after intrauterine hypoxia. Methods A total of 15 healthy adult pregnant mice were randomly divided into 3 groups: control group with 3 mice, model group and CPCGI treatment group with 6 mice in each group. From the 14th day of pregnancy, the pregnant mice in the CPCGI treatment group and model group were put into the animal hypoxia box to produce the intrauterine hypoxia fetal mouse models. After the delivery of mother, the neonatal mice in the CPCGI treatment group and model group were given CPCGI (1 mL/kg) and PBS via abdominal cavity, respectively, while the control group received no treatment. At 40 days postpartum, the memory ability of mice was trained with a platform jumper test. After the platform test, the brain tissue of the mice was taken out. The expression of neurogenolase (NSE), interleukin-1 beta (IL-1ß), CBLN4 and synaptophsin (SYN) were detected by immunofluorescence staining. The relative expression of CBLN4 protein in the hippocampus of mice was detected by Western blot analysis. Results Compared with the control group, hypoxia caused a significant decrease in learning and memory ability of newborn mice, and CPCGI could significantly improve the memory of mice. After hypoxia, the expression of NSE, CBLN4 and SYN in the neonatal cerebellum significantly decreased, and the expression of IL-1ß significantly increased. The expression of NSE, CBLN4 and SYN in CPCGI treatment group was significantly higher than those in the model group, and the expression of IL-1ß was significantly lower than that in the model group. Conclusion CPCGI can reduce neuronal damage in neonatal mice after hypoxia, which may be related to the reduction of IL-1ß expression and the promotion of synaptic reconstruction.


Assuntos
Lesões Encefálicas , Cerebrosídeos , Gangliosídeos , Regulação da Expressão Gênica , Hipóxia , Animais , Animais Recém-Nascidos , Lesões Encefálicas/tratamento farmacológico , Cerebrosídeos/farmacologia , Cerebrosídeos/uso terapêutico , Feminino , Gangliosídeos/farmacologia , Gangliosídeos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Hipóxia/genética , Camundongos , Gravidez , Suínos
18.
ASN Neuro ; 11: 1759091419884859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31635474

RESUMO

We previously reported that ganglioside GD3 is the predominant species in neural stem cells (NSCs) and reduced postnatal NSC pools are observed in both the subventricular zone and dentate gyrus (DG) of GD3-synthase knockout (GD3S-KO) mouse brains. Specifically, deficiency of GD3 in GD3S-KO animals revealed a dramatic reduction in cellularity in the DG of the hippocampus of the developing mouse brain, resulting in severe behavioral deficits in these animals. To further evaluate the functional role of GD3 in postnatal brain, we performed rescue experiments by intracerebroventricular infusion of ganglioside GD3 in adult GD3S-KO animals and found that it could restore the NSC pools and enhance the NSCs for self-renewal. Furthermore, 5xFAD mouse model was utilized, and GD3 restored NSC numbers and GM1 promoted neuronal differentiation. Our results thus demonstrate that exogenously administered gangliosides are capable to restore the function of postnatal NSCs. Since ganglioside expression profiles are associated not only with normal brain development but also with pathogenic mechanisms of diseases, such as Alzheimer's disease, we anticipate that the administration of exogenous gangliosides, such as GD3 and GM1, may represent a novel and effective strategy for promoting adult neurogenesis in damaged brain for disease treatment.


Assuntos
Encéfalo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Encéfalo/citologia , Gangliosídeos/deficiência , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia
19.
Proc Natl Acad Sci U S A ; 116(36): 18098-18108, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431523

RESUMO

Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.


Assuntos
Toxinas Botulínicas Tipo A , Gangliosídeos , Sinaptotagmina I , Animais , Sítios de Ligação , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Gangliosídeos/química , Gangliosídeos/farmacologia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Ratos , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/química , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo
20.
Toxicol Appl Pharmacol ; 377: 114627, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202640

RESUMO

In many neuropathologies activated microglia and macrophages cause neurotoxicity and prolong the inflammatory response. We have previously characterized the glycosphingolipid Neurostatin (Nst), which potentially reduces these detrimental mechanisms. Nst, isolated from mammalian brain, is the GD1b ganglioside with O-acetylation of the outer sialic acid residue. Using the enzyme sialate-O-acetyltransferase (SOAT), we obtained several O-acetylated gangliosides and O-propionylated GD1b (PrGD1b). In the present study we investigated the anti-inflammatory effects of these compounds. Nst and other O-acetylated gangliosides reduced nitrite production in microglial cells which were activated with lipopolysaccharide (LPS), but did not affect nitrite production after their stimulation with interferon gamma (IFNγ). Structure-activity relationship analysis showed that Nst was the most active ganglioside as inhibitor of nitrite production. Its ceramide moiety is essential for this, and both, the O-acetylation and the monosaccharide chain are important for the anti-inflammatory activity of the gangliosides. We also found that Nst reduced iNOS, IL-6 and IL-12 transcription in LPS-induced microglia, likely by inhibiting nuclear localization of NFκB. In co-cultures, Nst reduced neuronal cell death caused by LPS-activated microglia. In vivo, Nst diminished microglia activation in a mouse model of acute neuroinflammation. We propose that Nst and other O-acetylated gangliosides are neuroprotective regulators of microglia activity under both physiological and pathological conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Encefalite/prevenção & controle , Gangliosídeos/farmacologia , Glicoesfingolipídeos/farmacologia , NF-kappa B/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...